Geographically weighted Poisson regression for disease association mapping.

نویسندگان

  • T Nakaya
  • A S Fotheringham
  • C Brunsdon
  • M Charlton
چکیده

This paper describes geographically weighted Poisson regression (GWPR) and its semi-parametric variant as a new statistical tool for analysing disease maps arising from spatially non-stationary processes. The method is a type of conditional kernel regression which uses a spatial weighting function to estimate spatial variations in Poisson regression parameters. It enables us to draw surfaces of local parameter estimates which depict spatial variations in the relationships between disease rates and socio-economic characteristics. The method therefore can be used to test the general assumption made, often without question, in the global modelling of spatial data that the processes being modelled are stationary over space. Equally, it can be used to identify parts of the study region in which 'interesting' relationships might be occurring and where further investigation might be warranted. Such exceptions can easily be missed in traditional global modelling and therefore GWPR provides disease analysts with an important new set of statistical tools. We demonstrate the GWPR approach applied to a data set of working-age deaths in the Tokyo metropolitan area, Japan. The results indicate that there are significant spatial variations (that is, variation beyond that expected from random sampling) in the relationships between working-age mortality and occupational segregation and between working-age mortality and unemployment throughout the Tokyo metropolitan area and that, consequently, the application of traditional 'global' models would yield misleading results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M

Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...

متن کامل

Spatiotemporal analysis of the relationship between socioeconomic factors and stroke in the Portuguese mainland population under 65 years old.

Stroke risk has been shown to display varying patterns of geographic distribution amongst countries but also between regions of the same country. Traditionally a disease of older persons, a global 25% increase in incidence instead was noticed between 1990 and 2010 in persons aged 20-≤64 years, particularly in low- and medium-income countries. Understanding spatial disparities in the association...

متن کامل

Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests

Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...

متن کامل

Mapping the Results of Geographically Weighted Regression

Geographically weighted regression (GWR) is a local spatial statistical technique for exploring spatial nonstationarity. Previous approaches to mapping the results of GWR have primarily employed an equal step classification and sequential no-hue colour scheme for choropleth mapping of parameter estimates. This cartographic approach may hinder the exploration of spatial nonstationarity by inadeq...

متن کامل

Mapping the results of local statistics: Using geographically weighted regression.

The application of geographically weighted regression (GWR) - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics in medicine

دوره 24 17  شماره 

صفحات  -

تاریخ انتشار 2005